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Abstract We present global analyses of effective Higgs
portal dark matter models in the frequentist and
Bayesian statistical frameworks. Complementing ear-
lier studies of the scalar Higgs portal, we use GAMBIT
to determine the preferred mass and coupling ranges
for models with vector, Majorana and Dirac fermion
dark matter. We also assess the relative plausibility of
all four models using Bayesian model comparison. Our
analysis includes up-to-date likelihood functions for the
dark matter relic density, invisible Higgs decays, and
direct and indirect searches for weakly-interacting dark
matter including the latest XENON1T data. We also
account for important uncertainties arising from the
local density and velocity distribution of dark matter,
nuclear matrix elements relevant to direct detection,
and Standard Model masses and couplings. In all Higgs
portal models, we find parameter regions that can ex-
plain all of dark matter and give a good fit to all data.
The case of vector dark matter requires the most tuning
and is therefore slightly disfavoured from a Bayesian
point of view. In the case of fermionic dark matter, we
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find a strong preference for including a CP-violating
phase that allows suppression of constraints from direct
detection experiments, with odds in favour of CP viola-
tion of the order of 100:1. Finally, we present DDCalc
2.0.0, a tool for calculating direct detection observables
and likelihoods for arbitrary non-relativistic effective
operators.
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1 Introduction

Cosmological and astrophysical experiments have pro-
vided firm evidence for the existence of dark matter
(DM) [1–4]. While the nature of the DM particles and
their interactions remains an open question, it is clear
that the viable candidates must lie in theories beyond
the Standard Model (BSM). A particularly interesting
class of candidates are weakly interacting massive parti-
cles (WIMPs) [5]. They appear naturally in many BSM
theories, such as supersymmetry (SUSY) [6]. Due to
their weak-scale interaction cross-section, they can ac-
curately reproduce the observed DM abundance in the
Universe today.

So far there is no evidence that DM interacts with
ordinary matter in any way except via gravity. However,
the generic possibility exists that Standard Model (SM)
particles may connect to new particles via the lowest-
dimension gauge-invariant operator of the SM, H†H. It
is therefore natural to assume that the standard Higgs
boson (or another scalar that mixes with the Higgs)
couples to massive DM particles via such a ‘Higgs portal’
[7–27]. The discovery of the Higgs boson in 2012 by
ATLAS [28] and CMS [29] therefore opens an exciting
potential window for probing DM.

Despite being simple extensions of the SM in terms
of particle content and interactions, Higgs portal models
have a rich phenomenology, and can serve as effective
descriptions of more complicated theories [30–51]. They
can produce distinct signals at present and future collid-
ers, DM direct detection experiments or in cosmic ray
experiments. In the recent literature, experimental lim-
its on Higgs portal models were considered from Large
Hadron Collider (LHC), Circular Electron Positron Col-
lider and Linear Collider searches, LUX and PandaX,
supernovae, charged cosmic and gamma rays, Big Bang
Nucleosynthesis, and cosmology [52–77]. The lack of
such signals to date places stringent constraints on Higgs
portal models.

The first global study of the scalar Higgs portal
DM model was performed in Ref. [78]. The most recent
global fits [79, 80] included relic density constraints

from Planck, leading direct detection constraints from
LUX, XENON1T, PandaX and SuperCDMS, upper
limits on the gamma-ray flux from DM annihilation in
dwarf spheroidal galaxies with the Fermi-LAT, limits on
solar DM annihilation from IceCube, and constraints on
decays of SM-like Higgs bosons to scalar singlet particles.
The most recent [80] also considered the Z3 symmetric
version of the model, and the impact of requiring vacuum
stability and perturbativity up to high energy scales.

In this paper, we perform the first global fits of the
effective vector, Majorana fermion and Dirac fermion
Higgs portal DM models using the GAMBIT package [81].
By employing the latest data from the DM abundance,
indirect and direct DM search limits, and the invisible
Higgs width, we systematically explore the model pa-
rameter space and present both frequentist and Bayesian
results. In our fits, we include the most important SM,
nuclear physics, and DM halo model nuisance parame-
ters. For the fermion DM models, we present a Bayesian
model comparison between the CP-conserving and CP-
violating versions of the theory. We also carry out a
model comparison between scalar, vector and fermion
DM models.

In Sec. 2, we introduce the effective vector and
fermion Higgs portal DM models. We describe the con-
straints that we use in our global fits in Sec. 3, and the
details of our parameter scans in Sec. 4. We present
likelihood and Bayesian model comparison results re-
spectively in Secs. 5 and 6, and conclude in Sec. 7.
Appendix A documents new features included in the
latest version of DDCalc. Appendix B contains all the
relevant expressions for the DM annihilation rate into
SM particles. All GAMBIT input files, samples and best-
fit points for this study are publicly available online via
Zenodo [82].

2 Models

We separately consider vector (Vµ), Majorana fermion
(χ) and Dirac fermion (ψ) DM particles that are singlets
under the SM gauge group. By imposing an unbroken
global Z2 symmetry, under which all SM fields transform
trivially but (Vµ, χ, ψ) → −(Vµ, χ, ψ), we ensure that
our DM candidates are absolutely stable.

Before electroweak symmetry breaking (EWSB), the
Lagrangians for the three different scenarios are [51]

LV = LSM −
1
4WµνW

µν + 1
2µ

2
V VµV

µ − 1
4!λV (VµV µ)2

+ 1
2λhV VµV

µH†H, (1)

Lχ = LSM + 1
2χ(i/∂ − µχ)χ
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− 1
2
λhχ
Λχ

(
cos θ χχ+ sin θ χiγ5χ

)
H†H, (2)

Lψ = LSM + ψ(i/∂ − µψ)ψ

− λhψ
Λψ

(
cos θ ψψ + sin θ ψiγ5ψ

)
H†H, (3)

where LSM is the SM Lagrangian,Wµν ≡ ∂µVν−∂νVµ is
the vector field strength tensor, λhV is the dimensionless
vector Higgs portal coupling, λhχ,hψ/Λχ,ψ are the dimen-
sionful fermionic Higgs portal couplings, and H is the
SM Higgs doublet. The fermionic Lagrangians include
both CP-odd and CP-even Higgs-portal operators, with
θ controlling their relative size. The choice cos θ = 1
corresponds to a pure scalar, CP-conserving interac-
tion between the fermionic DM and the SM Higgs field,
whereas cos θ = 0 corresponds to a pure pseudoscalar,
maximally CP-violating interaction. We discuss a pos-
sible ultraviolet (UV) completion of such a model in
Sec. 3.7 (see also Refs. [12, 23]).

Although all operators in the vector DM model have
mass dimension four, the model itself is fundamentally
non-renormalisable, as we do not impose a gauge sym-
metry to forbid e.g. the mass term for the vector field.
Processes with large energies compared to the vector
DM mass will violate perturbative unitarity: for large
momentum, longitudinal modes of the vector propa-
gator become constant and cross-sections become di-
vergent. In this study we remain agnostic as to the
origin of the vector mass term and the quartic vector
self-interaction, however we do consider perturbative
unitarity in Sec. 3.7.

After EWSB, the Higgs field acquires a non-zero
vacuum expectation value (VEV). In the unitary gauge,
we can write

H = 1√
2

(
0

v0 + h

)
, (4)

where h is the physical SM Higgs field and v0 =
(
√

2GF )−1/2 = 246.22GeV is the Higgs VEV. Thus,
the H†H terms in Eqs. (1–3) generate mass and inter-
action terms for the DM fields. The tree-level physical
mass of the vector DM is

m2
V = µ2

V + 1
2λhV v

2
0 . (5)

For the fermion DM models, the pseudoscalar term (pro-
portional to sin θ) generates a non-mass-type term that
is purely quadratic in the DM fields (e.g., ψγ5ψ). There-
fore after EWSB, to eliminate this term, we perform a
chiral rotation of the fermion DM fields through

χ→ eiγ5α/2χ, ψ → eiγ5α/2ψ , (6)

where α is a real, space-time independent parameter.1
Using the details outlined in the appendix of Ref. [51],
we arrive at the following post-EWSB fermion DM La-
grangians

Lχ = LSM + 1
2χ(i/∂ −mχ)χ

− 1
2
λhχ
Λχ

[
cos ξ χχ+ sin ξ χiγ5χ

](
v0h+ 1

2h
2
)
,

(7)
Lψ = LSM + ψ(i/∂ −mψ)ψ

− λhψ
Λψ

[
cos ξ ψψ + sin ξ ψiγ5ψ

](
v0h+ 1

2h
2
)
,

(8)

where ξ ≡ θ + α,

cos ξ = µχ,ψ
mχ,ψ

(
cos θ + 1

2
λhχ,hψ
Λχ,ψ

v2
0

µχ,ψ

)
, (9)

and

mχ,ψ =
[(

µχ,ψ + 1
2
λhχ,hψ
Λχ,ψ

v2
0 cos θ

)2

+
(

1
2
λhχ,hψ
Λχ,ψ

v2
0 sin θ

)2
]1/2

. (10)

In particular, we note that a theory that is CP-
conserving before EWSB (cos θ = 1) is still CP-
conserving after EWSB (cos ξ = 1). Because the simplest
UV completion leads to cos θ = 1, this means the par-
ticular choice of cos ξ = 1 is also natural from the UV
perspective.2 In light of this, we compare the viability
of a CP-conserving scenario to the most general case
with arbitrary ξ in Sec. 6.

3 Constraints

The free parameters of the Lagrangians are subject to
various observational and theoretical constraints. For the
case of vector DM, the relevant parameters after EWSB
are the vector DM mass mV and the dimensionless
coupling λhV .3 The post-EWSB fermion Lagrangians
1Note that for the Majorana case, the 4-component spinor can
be written in terms of one two-component Weyl spinor. This
transformation simply corresponds to a phase transformation of
this two-component spinor.
2This is not the case for the maximally CP-violating choice
(cos θ = 0) as EWSB induces a scalar interaction term with
cos ξ ∝ v2

0 [83].
3The quartic self-coupling λV does not play any role in the DM
phenomenology that we consider, and can be ignored. However,
it is vital if constraints from electroweak vacuum stability and
model perturbativity are imposed [84]. For a global fit including
vacuum stability of scalar DM, see e.g., Ref. [80].
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Likelihoods GAMBIT modules/backends Ref.
Relic density (Planck) DarkBit [4]
Higgs invisible width DecayBit [85]

Fermi-LAT dSphs gamLike 1.0.0 [86]
LUX 2016 (Run II) DDCalc 2.0.0 [87]

PandaX 2016 DDCalc 2.0.0 [88]
PandaX 2017 DDCalc 2.0.0 [89]

XENON1T 2018 DDCalc 2.0.0 [90]
CDMSlite DDCalc 2.0.0 [91]
CRESST-II DDCalc 2.0.0 [92]

PICO-60 2017 DDCalc 2.0.0 [93]
DarkSide-50 2018 DDCalc 2.0.0 [94]
IceCube 79-string nulike 1.0.6 [95]

Table 1: Likelihoods and corresponding GAMBIT modules/back-
ends employed in our global fit.

contain three free parameters: the fermion DM mass
mχ,ψ, the dimensionful coupling λhχ,hψ/Λχ,ψ between
DM and the Higgs, and the scalar-pseudoscalar mixing
parameter ξ.

In Table 1, we summarise the various likelihoods
used to constrain the model parameters in our global fit.
In the following subsections, we will discuss both the
physics as well as the implementation of each of these
constraints.

3.1 Thermal relic density

The time evolution of the DM number density nX is
governed by the Boltzmann equation [96]

dnX
dt

+ 3HnX = −〈σvrel〉
(
n2
X − n2

X,eq
)
, (11)

where nX,eq is the number density at equilibrium, H is
the Hubble rate and 〈σvrel〉 is the thermally averaged
cross-section times relative (Møller) velocity, given by

〈σvrel〉 =
∫ ∞

4m2
X

ds
s
√
s− 4m2

XK1 (
√
s/T )

16Tm4
XK

2
2 (mX/T ) σvcms

rel , (12)

where vcms
rel is the relative velocity of the DM particles in

the centre-of-mass frame, and K1,2 are modified Bessel
functions.

In the scenarios discussed above, the annihilation
process of DM receives contributions from all kinemati-
cally accessible final states involving massive SM fields,
including neutrinos. Annihilations into SM gauge bosons
and fermions are mediated by a Higgs boson in the s-
channel; consequently, near the resonance region, where
mX ' mh/2, it is crucial to perform the actual thermal
average as defined in Eq. (12) instead of expanding σvcms

rel

into partial waves.4 Moreover, we take into account the
important contributions arising from the production of
off-shell pairs of gauge bosons WW ∗ and ZZ∗ [98]. To
this end, for 45 GeV ≤

√
s ≤ 300 GeV, we compute

the annihilation cross-section into SM gauge bosons and
fermions in the narrow-width approximation via

σvcms
rel = P (X)2λ2

hXv
2
0√

s

Γh (m∗h =
√
s)

(s−m2
h)2 +m2

hΓ
2
h (mh)

, (13)

where we employ the tabulated Higgs branching ratios
Γ (m∗h) as implemented in DecayBit [85]. For fermionic
DM, the dimensionful coupling is implied, λhX ∈
{λhV , λhψ/Λψ, λhχ/Λχ}. The pre-factor P (X) is given
by

P (X) =


1
9

(
3− s

m2
V

+ s2

4m4
V

)
, X = Vµ,

s

2

(
1− 4m2

X cos2 ξ

s

)
, X = ψ, χ .

(14)

In particular, we notice that for CP-conserving inter-
actions of a fermionic DM particle, the annihilation
cross-section is p-wave suppressed.

As shown in Ref. [98], for
√
s & 300GeV the Higgs 1-

loop self-interaction begins to overestimate the tabulated
Higgs boson width in Ref. [99]. Thus, for

√
s > 300GeV

(where the off-shell production of gauge boson pairs is
irrelevant anyway), we revert to the tree-level expres-
sions for the annihilation processes given in Appendix B.
Moreover, for mX ≥ mh, DM can annihilate into a
pair of Higgs bosons, a process which is not included in
Eq. (13). We supplement the cross-sections computed
from the tabulated DecayBit values with this process for
mX ≥ mh. The corresponding analytical expression for
the annihilation cross-sections are given in Appendix B.

Finally, we obtain the relic density of X by numer-
ically solving Eq. (11) at each parameter point, using
the routines implemented in DarkSUSY [100, 101] via
DarkBit.

In the spirit of the EFT framework employed in
this work, we do not demand that the particle X con-
stitutes all of the observed DM, i.e., we allow for the
possibility of other DM species to contribute to the
observed relic density. Concretely, we implement the
relic density constraint using a likelihood that is flat for
predicted values below the observed one, and based on a
Gaussian likelihood following the Planck measured value
4We assume DM to be in a local thermal equilibrium (LTE)
during freeze-out. As pointed out in Ref. [97], this assumption
can break down very close to the resonance, thereby requiring a
full numerical solution of the Boltzmann equation in phase space.
As this part of the parameter space is in any case very difficult
to test experimentally (see Sec. 5), we stick to the standard
approximation of LTE.
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ΩDMh
2 = 0.1188±0.0010 [4] for predictions that exceed

the observed central value. We include a 5% theoretical
error on the computed values of the relic density, which
we combine in quadrature with the observed error on the
Planck measured value. More details on this prescription
can be found in Refs. [81, 102].

In regions of the model parameter space where the
relic abundance of X is less than the observed value,
we rescale all predicted direct and indirect detection
signals by frel ≡ ΩX/ΩDM and f2

rel, respectively. In
doing so, we conservatively assume that the remaining
DM population does not contribute to signals in these
experiments.

3.2 Higgs invisible decays

For mX < mh/2, the SM Higgs boson can decay into a
pair of DM particles, with rates given by [51]

Γinv(h→ V V ) = λ2
hV v

2
0m

3
h

128πm4
V

(
1− 4m2

V

m2
h

+ 12m4
V

m4
h

)

×

√
1− 4m2

V

m2
h

, (15)

Γinv(h→ χχ) = mhv
2
0

16π

(
λhχ
Λχ

)2
(

1−
4m2

χ cos2 ξ

m2
h

)

×

√
1−

4m2
χ

m2
h

, (16)

Γinv(h→ ψψ) = mhv
2
0

8π

(
λhψ
Λψ

)2
(

1−
4m2

ψ cos2 ξ

m2
h

)

×

√
1−

4m2
ψ

m2
h

, (17)

for the vector, Majorana and Dirac DM scenarios, respec-
tively. These processes contribute to the Higgs invisible
width Γinv, which is constrained to be less than 19% of
the total width at 2σ C.L. [103], for SM-like Higgs cou-
plings. We take this constraint into account by using the
DecayBit implementation of the Higgs invisible width
likelihood, which in turn is based on an interpolation of
Fig. 8 in Ref. [103]. Beyond the Higgs invisible width,
the LHC provides only a mild constraint on Higgs portal
models [104].

3.3 Indirect detection using gamma rays

Arguably, the most immediate prediction of the thermal
freeze-out scenario is that DM particles can annihilate
today, most notably in regions of enhanced DM den-
sity. In particular, gamma-ray observations of dwarf

spheroidal galaxies (dSphs) of the Milky Way are strong
and robust probes of any model of thermal DM with
unsuppressed annihilation into SM particles.5

As described in more detail in Ref. [102], the flux
of gamma rays in a given energy bin i from a target
object labeled by k can be written in the factorised
form Φi · Jk, where Φi encodes all information about
the particle physics properties of the DM annihilation
process, while Jk depends on the spatial distribution of
DM in the region of interest. For s-wave annihilation,
one obtains

Φi = κ
∑
j

(σv)0,j

8πm2
X

∫
∆Ei

dE
dNγ,j
dE

, (18)

Jk =
∫
∆Ωk

dΩ

∫
l.o.s.

ds ρ2
X . (19)

Here κ is a phase space factor (equal to 1 for self-
conjugate DM and 1/2 for non-self-conjugate DM),
(σv)0,j is the annihilation cross-section into the final
state j in the zero-velocity limit, and dNγ,j/dE is the
corresponding differential gamma-ray spectrum. The
J-factor in Eq. (19) is defined via a line of sight (l.o.s.)
integral over the square of the DM density ρX towards
the target object k, extended over a solid angle ∆Ωk.

In our analysis, we include the Pass-8 combined
analysis of 15 dwarf galaxies using 6 years of Fermi-LAT
data [86], which currently provides the strongest bounds
on the annihilation cross-section of DM into final states
containing gamma rays. We use the binned likelihoods
implemented in DarkBit [102], which make use of the
gamLike package. Besides the likelihood associated with
the gamma-ray observations, given by

lnLexp =
NdSphs∑
k=1

NeBins∑
i=1

lnLki (Φi · Jk) , (20)

we also include a term lnLJ that parametrises the un-
certainties on the J-factors [86, 102]. We obtain the
overall likelihood by profiling over the J-factors of all
15 dwarf galaxies, as

lnLprof.
dwarfs = max

J1...Jk

(lnLexp + lnLJ) . (21)

Let us remark again that for the case of Dirac or
Majorana fermion DM with CP-conserving interactions
(i.e., ξ = 0), the annihilation cross-section vanishes in
the zero-velocity limit. Scenarios with ξ 6= 0 therefore
pay the price of an additional penalty from gamma-ray
observations, compared to the CP-conserving case.
5We do not include constraints from cosmic-ray antiprotons;
although they are potentially competitive with or even stronger
than those from gamma-ray observations of dSphs, there is still
no consensus on the systematic uncertainty of the upper bound
on a DM-induced component in the antiproton spectrum [69, 105–
107].
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3.4 Direct detection

Direct searches for DM aim to measure the recoil of a
nucleus after it has scattered off a DM particle [108].
Following the notation of Ref. [102], we write the pre-
dicted number of signal events in a given experiment as

Np = MTexp

∫ ∞
0

φ (E) dR
dE

dE , (22)

where M is the detector mass, Texp is the exposure time
and φ (E) is the detector efficiency function, i.e., the frac-
tion of recoil events with energy E that are observable
after applying all cuts from the corresponding analysis.
The differential recoil rate dR/dE for scattering with a
target isotope T is given by

dR

dE
= 2ρ0

mX

∫
vf (v, t) dσ

dq2

(
q2, v

)
d3v . (23)

Here ρ0 is the local DM density, f(v, t) is the DM
velocity distribution in the rest frame of the detector,
and dσ/dq2(q2, v) is the differential scattering cross-
section with respect to the momentum transfer q =√

2mTE.
For the vector DM model, the DM-nucleon scattering

process is induced by the standard spin-independent (SI)
interaction, with a cross-section given by [51]

σVSI = µ2
N

π

λ2
hV f

2
Nm

2
N

4m2
Vm

4
h

, (24)

where µN = mVmN/(mV + mN ) is the DM-nucleon
reduced mass and fN is the effective Higgs-nucleon cou-
pling. The latter is related to the quark content of a
proton and neutron, and is subject to (mild) uncertain-
ties. In our analysis we treat the relevant nuclear matrix
elements as nuisance parameters; this will be discussed
in more detail in Sec. 3.6.

In the case of fermionic DM X ∈ {χ, ψ}, the pseu-
doscalar current Xiγ5X induces a non-standard depen-
dence of the differential scattering cross-section on the
momentum transfer q (see e.g., Ref. [109]):

dσXSI
dq2 = 1

v2

(
λhX
ΛX

)2
A2F 2(E)f2

Nm
2
N

4πm4
h

×
(

cos2 ξ + q2

4m2
X

sin2 ξ

)
, (25)

where A is the mass number of the target isotope of
interest, and F 2(E) is the standard form factor for spin-
independent scattering [110]. As the typical momentum
transfer in a scattering process is |q| ' (1−100) MeV�
mX , we note that direct detection constraints will be
significantly suppressed for scenarios that are dominated

by the pseudoscalar interaction, i.e., for ξ ' π/2. For
both the vector and fermion models, the spin-dependent
(SD) cross-section is absent at leading order.

For the evaluation of Np in Eq. (22), we assume a
Maxwell-Boltzmann velocity distribution in the Galactic
rest frame, with a peak velocity vpeak and truncated
at the local escape velocity vesc. We refer to Ref. [102]
for the conversion to the velocity distribution f (v, t)
in the detector rest frame. We discuss the likelihoods
associated with the uncertainties in the DM velocity
distribution in Sec. 3.6.

We use the DarkBit interface to DDCalc 2.0.06 to
calculate the number of observed events o in the signal
regions for each experiment and to evaluate the standard
Poisson likelihood

L (s|o) = (b+ s)o e−(b+s)

o! , (26)

where s and b are the respective numbers of expected
signal and background events. We model the detector
efficiencies and acceptance rates by interpolating be-
tween the pre-computed tables in DDCalc. We include
likelihoods from the new XENON1T 2018 analysis [90],
LUX 2016 [87], PandaX 2016 [88] and 2017 [89] analy-
ses, CDMSlite [91], CRESST-II [92], PICO-60 [93], and
DarkSide-50 [94]. Details of these implementations, as
well as an overview of the new features contained in
DDCalc 2.0.0, can be found in Appendix A.

3.5 Capture and annihilation of DM in the Sun

Similar to the process underlying direct detection, DM
particles from the local halo can also elastically scatter
off nuclei in the Sun and become gravitationally bound.
The resulting population of DM particles near the core
of the Sun can then induce annihilations into high-
energy SM particles that subsequently interact with the
matter in the solar core. Of the resulting particles, only
neutrinos are able to escape the dense Solar environment.
Eventually, these can be detected in neutrino detectors
on the Earth [111–113].

The capture rate of DM in the Sun is obtained by in-
tegrating the differential scattering cross-section dσ/dq2

over the range of recoil energies resulting in a gravita-
tional capture, as well as over the Sun’s volume and the
DM velocity distribution. To this end, we employ the
newly-developed public code Capt’n General7, which com-
putes capture rates in the Sun for spin-independent and
spin-dependent interactions with general momentum-
6http://ddcalc.hepforge.org/
http://github.com/patscott/ddcalc/
7https://github.com/aaronvincent/captngen

http://ddcalc.hepforge.org/
http://github.com/patscott/ddcalc/
https://github.com/aaronvincent/captngen
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and velocity-dependence, using the B16 Standard Solar
Model [114] composition and density distribution. We
refer to Refs. [115, 116] for details on the capture rate
calculation. Notice that similar to direct detection, the
capture rate is also subject to uncertainties related to
the local density and velocity distribution of DM in the
Milky Way. As mentioned earlier, these uncertainties
are taken into account by separate nuisance likelihoods
to be discussed in Sec. 3.6.

Neglecting evaporation (which is well-justified for
the DM masses of interest in this study [117–119]), the
total population of DM in the Sun NX(t) follows from

dNX(t)
dt

= C(t)−A(t) , (27)

where C(t) is the capture rate of DM in the Sun, and
A(t) ∝ 〈σvrel〉NX(t)2 is the annihilation rate of DM
inside the Sun; this is calculated by DarkBit. We approx-
imate the thermally averaged DM annihilation cross-
section, which enters in the expression for the annihi-
lation rate, by evaluating σv at v =

√
2T�/mX , where

T� = 1.35 keV is the core temperature of the Sun.
At sufficiently large t, the solution for NX(t) reaches

a steady state and depends only on the capture rate.
However, the corresponding time scale τ for reaching
equilibrium depends also on σv, and thus changes from
point to point in the parameter space. Hence, we use
the full solution of Eq. (27) to determine NX at present
times, which in turn determines the normalization of
the neutrino flux potentially detectable at Earth. We
obtain the flavour and energy distribution of the latter
using results from WimpSim [120] included in DarkSUSY
[100, 101].

Finally, we employ the likelihoods derived from the
79-string IceCube search for high-energy neutrinos from
DM annihilation in the Sun [95] using nulike [121] via
DarkBit; this contains a full unbinned likelihood based
on the event-level energy and angular information of
the candidate events.

3.6 Nuisance likelihoods

The constraints discussed in the previous sections often
depend on nuisance parameters, i.e. parameters not of
direct interest but required as input for other calcula-
tions. Examples are nuclear matrix elements related to
the DM direct detection process, the distribution of DM
in the Milky Way, or SM parameters known only to
finite accuracy. It is one of the great virtues of a global
fit that such uncertainties can be taken into account in
a fully consistent way, namely by introducing new free
parameters into the fit and constraining them by new
likelihood terms that characterise their uncertainty. We

Parameter Value (±Range)
Local DM density ρ0 0.2–0.8GeVcm−3

Most probable speed vpeak 240 (24) km s−1

Galactic escape speed vesc 533 (96) km s−1

Nuclear matrix element σs 43 (24)MeV
Nuclear matrix element σl 50 (45)MeV

Higgs pole mass mh 124.1–127.3GeV

Strong coupling αMS
s (mZ) 0.1181 (33)

Table 2: Nuisance parameters that are varied simultaneously
with the DM model parameters in our scans. All parameters
have flat priors. For more details about the nuisance likelihoods,
see Sec. 3.6.

list the nuisance parameters included in our analysis in
Table 2, and discuss each of them in more detail in the
rest of this section.

Following the default treatment in DarkBit, we in-
clude a nuisance likelihood for the local DM density ρ0
given by a log-normal distribution with central value
ρ0 = 0.40GeVcm−3 and an error σρ0 = 0.15GeVcm−3.
To reflect the log-normal distribution, we scan over an
asymmetric range for ρ0. For more details, see Ref. [102].

For the parameters determining the Maxwell-
Boltzmann distribution of the DM velocity in the Milky
Way, namely vpeak and vesc, we employ simple Gaussian
likelihoods. Since vpeak is equal to the circular rotation
speed vrot at the position of the Sun for an isother-
mal DM halo, we use the determination of vrot from
Ref. [122] to obtain vpeak = 240±8 km s−1.8 The escape
velocity takes a central value of vesc = 533±31.9 km s−1,
where we convert the 90% C.L. interval obtained by the
RAVE collaboration [125], assuming that the error is
Gaussian.

As noted already in Sec. 3.4, the scattering cross-
section of DM with nuclei (which enters both the direct
detection and solar capture calculations) depends on
the effective DM-nucleon coupling fN , which is given
by [102]

fN = 2
9 + 7

9
∑

q=u,d,s
f

(N)
Tq . (28)

Here f (N)
Tq are the nuclear matrix elements associated

with the quark q content of a nucleon N . As described
in more detail in Ref. [126], these are obtained from the
following observable combinations

σl ≡ ml〈N |uu+ dd|N〉, σs ≡ ms〈N |ss|N〉 , (29)
8Ref. [123] argues that the peculiar velocity of the Sun
is somewhat larger than the canonical value v�,pec =
(11, 12, 7) km s−1 [124], leading to vrot = 218 ± 6 km s−1. In
the present study we do not consider uncertainties in v�,pec
and therefore adopt the measurement of vrot from Ref. [122].



8

where ml ≡ (mu + md)/2. We take into account
the uncertainty on these matrix elements via Gaus-
sian likelihoods given by σs = 43 ± 8MeV [127] and
σl = 50 ± 15MeV [128]. The latter deviates from the
default choice implemented in DarkBit as it reflects re-
cent lattice results, which point towards smaller values
of σl (see Ref. [128] for more details). Furthermore, we
have confirmed that the uncertainties on the light quark
masses have a negligible impact on fN . Thus, for sim-
plicity, we do not include them in our fit.

We also use a Gaussian likelihood for the Higgs mass,
based on the PDG value of mh = 125.09 ± 0.24GeV
[129]. In line with our previous study of scalar singlet
DM [79], we allow the Higgs mass to vary by more
than 4σ as the phenomenology of our models depends
strongly on mh, most notably near the Higgs resonance
region. Finally, we take into account the uncertainty
on the strong coupling constant αs, which enters the
expression for the DM annihilation cross-section into
SM quarks (see Appendix B), taking a central value
αMS
s (mZ) = 0.1181± 0.0011 [129].

3.7 Perturbative unitarity and EFT validity

The parameter spaces in which we are interested are lim-
ited by the requirement of perturbative unitarity. First
of all, this requirement imposes a bound on any dimen-
sionless coupling in the theory. Furthermore, as neither
the vector or fermion Higgs portal models are renormal-
isable, we must ensure that the effective description is
valid for the parameter regions to be studied.

The dimensionless coupling λhV in the vector DM
model is constrained by the requirement that annihila-
tion processes such as V V → hh do not violate pertur-
bative unitarity. Determining the precise bound to be
imposed on λhV is somewhat involved, so we adopt the
rather generous requirement λhV < 10 with the implicit
understanding that perturbativity may become an issue
already for somewhat smaller couplings.

For small DM masses, an additional complication
arises from the fact that theories with massive vec-
tor bosons are not generally renormalisable. In that
case cross-sections do not generally remain finite in the
mV → 0 limit and a significant portion of parameter
space violates perturbative unitarity [130]. However, by
restricting ourselves to the case of µ2

V , λhV ≥ 0 we can
safely tackle both issues due to the fact thatmV → 0 im-
plies λhV → 0. Using Eq. (5), this condition translates
to

0 ≤ λhV ≤
2m2

V

v2
0

. (30)

A more careful analysis might lead to a slightly larger
valid parameter space, but as we will see in Sec. 5.1.1,
those regions would be excluded by the Higgs invisible
width anyway.

The EFT validity of the fermion DM models depends
on the specific UV completion. In this study, we consider
a UV completion in which a heavy scalar mediator field
Φ couples to the fermion DM X and the Higgs doublet
as [12]

L ⊃ −µgHΦH†H − gXΦX (cos θ + i sin θγ5)X , (31)

where X ∈ {χ, ψ} and µ has mass dimension 1.9 For
this specific UV completion, we assume that the mixing
between Φ and the Higgs field is negligible and can be
ignored. The heavy scalar field can be integrated out to
give a dimensionful coupling in the EFT approximation
as

L ⊃ −µgXgH
m2
Φ

H†HX (cos θ + i sin θγ5)X . (32)

Thus, by comparing Eq. (32) with the fermion DM
Lagrangians in Eqs. (2) and (3), we can identify
µgXgH/m

2
Φ with λhX/ΛX . As µ should be set by the

new physics scale, we take it to be roughly mΦ, imply-
ing gXgH/mΦ ∼ λhX/ΛX . In addition, we require the
couplings to be perturbative, i.e., gXgH ≤ 4π.

We need to consider the viable scales for which this
approximation is valid. We require that the mediator
mass mΦ is far greater than the momentum exchange
q of the interaction, i.e., mΦ � q such that Φ can be
integrated out. For DM annihilations, the momentum
exchange is q ≈ 2mX . Thus, the EFT approximation
breaks down when mΦ < 2mX and our EFT assumption
is violated when

λhX
ΛX

≥ 4π
2mX

. (33)

As the typical momentum transfer in a direct detection
experiment is roughly on the order of a few MeVs, the
EFT validity limit requires mΦ � O (MeV), which is
always satisfied by the previous demand mΦ > 2mX for
the mass ranges of interest. In this case, we assume that
the couplings saturate the bound from perturbativity,
i.e., gXgH = 4π; the constraint would be stronger if the
couplings were weaker.

Note that this prescription is only the simplest and
most conservative approach; additional constraints can
be obtained by unitarising the theory (e.g. [131]).

9Note that the γ5 term can be generated by a complex mass term
m̃X in the original fermion Lagrangian and performing a chiral
rotation. Thus, full CP conservation (cos θ = 1) is equivalent to
having a real mass term.
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Parameter Minimum Maximum Prior type
λhV 10−4 10 log
mV (low mass) 45GeV 70GeV flat
mV (high mass) 45GeV 10TeV log

Table 3: Parameter ranges and priors for the vector DM model.

Parameter Minimum Maximum Prior type
λhχ,hψ/Λχ,ψ 10−6 GeV−1 1 GeV−1 log
ξ 0 π flat
mχ,ψ (low mass) 45GeV 70GeV flat
mχ,ψ (high mass) 45GeV 10TeV log

Table 4: Parameter ranges and priors for the fermion DM
models. Our choice for the range of ξ between 0 and π reflects
the fact that only odd powers of cos ξ appear in the observables
that we consider, but never odd powers of sin ξ, which cancel
exactly due to the complex conjugation. Thus, the underlying
physics is symmetric under ξ → −ξ.

4 Scan details

We investigate the Higgs portal models using both
Bayesian and frequentist statistics. The parameter
ranges and priors that we employ in our scans of the vec-
tor and fermion DM models are summarised in Tables 3
and 4, respectively. Whilst the likelihoods described in
the previous sections are a common ingredient in both
our frequentist and Bayesian analyses, the priors only
directly impact our Bayesian analyses. We discuss our
choice of priors in Sec. 5.2. For a review of our statistical
approaches to parameter inference, see e.g., Ref. [81].

There are two main objectives for the Bayesian scans:
firstly, producing marginal posteriors for the parameters
of interest, where we integrate over all unplotted parame-
ters, and secondly, computing the marginal likelihood (or
Bayesian evidence). We discuss the marginal likelihood
in Sec. 6. We use T-Walk, an ensemble Markov Chain
Monte Carlo (MCMC) algorithm, for sampling from the
posterior, and MultiNest [132–134], a nested sampling al-
gorithm, for calculating the marginal likelihood. We use
T-Walk for obtaining the marginal posterior due to the
ellipsoidal bias commonly seen in posteriors computed
with MultiNest [135].

For the frequentist analysis, we are interested in
mapping out the highest likelihood regions of our pa-
rameter space. For this analysis we largely use Diver, a
differential evolution sampler, efficient for finding and
exploring the maxima of a multi-dimensional function.
Details of T-Walk and Diver can be found in Ref. [135].

Due to the resonant enhancement of the DM annihi-
lation rate by s-channel Higgs exchange at mX ≈ mh/2,
there is a large range of allowed DM-Higgs couplings

Scanner Parameter Value
T-Walk chain_number 1370 (1)

sqrtR − 1 < 0.01
timeout_mins 1380

MultiNest nlive 20,000
tol 10−2

Diver NP 50,000
convthresh 10−5

Table 5: Conversion criteria used for various scanning algo-
rithms in both the full and low mass regimes. The chain_number
chosen for T-Walk varies from scan to scan; we use the default
T-Walk behaviour of chain_number = NMPI + Nparams + 1 on
1360 MPI processes. For more details, see Ref. [135].

that do not overproduce the observed DM abundance.
When scanning over the full mass range, it is difficult
to sample this resonance region well, especially with a
large number of nuisance parameters. For this reason,
we perform separate, specific scans in the low-mass re-
gion around the resonance, using both T-Walk and Diver.
When plotting the profile likelihoods, we combine the
samples from the low- and high-mass scans.

In addition, as part of the Bayesian analysis, we
perform targeted T-Walk and MultiNest scans of the
fermion DM parameter space where the interaction is
wholly scalar (ξ = 0), using the same priors for the
fermion DM mass and its dimensionful coupling as in
Table 4. This allows us to perform model comparison
between the cases where ξ is fixed at zero, and where it
is left as a free parameter.

The convergence criteria that we employ for the
different samplers are outlined in Table 5. We carried
out all Diver scans on 340 Intel Xeon Phi 7250 (Knights
Landing) cores. As in our recent study of scalar singlet
DM [80], we ran T-Walk scans on 1360 cores for 23 hours,
providing us with reliable sampling. The MultiNest scans
are based on runs using 240 Intel Broadwell cores, with
a relatively high tolerance value, which is nevertheless
sufficient to compute the marginal likelihood to the
accuracy required for model comparison. We use the
importance sampling log-evidence from MultiNest to
compute Bayes factors.

For profile likelihood plots, we combine the samples
from all Diver and T-Walk scans, for each model. The
plots are based on 1.46× 107, 1.70× 107 and 1.73× 107

samples for the vector, Majorana and Dirac models,
respectively. We do all marginalisation, profiling and
plotting with pippi [136].
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Fig. 1: Profile likelihood in the (mV , λhV ) plane for vector DM. Contour lines show the 1 and 2σ confidence regions. The left panel
gives an enhanced view of the resonance region around mV ∼ mh/2. The right panel shows the full parameter space explored in our
fits. The greyed out region shows points that do not satisfy Eq. (30), the white star shows the best-fit point, and the edges of the
preferred parameter space along which the model reproduces the entire observed relic density are indicated with orange annotations.

∆ lnL
Log-likelihood contribution Ideal Vµ Vµ + RD χ χ + RD ψ ψ + RD
Relic density 5.989 0.000 0.106 0.000 0.107 0.000 0.109
Higgs invisible width 0.000 0.000 0.000 0.000 0.001 0.000 0.000
γ rays (Fermi-LAT dwarfs) −33.244 0.105 0.105 0.102 0.120 0.129 0.136
LUX 2016 (Run II) −1.467 0.003 0.003 0.020 0.000 0.028 0.033
PandaX 2016 −1.886 0.002 0.002 0.013 0.000 0.018 0.021
PandaX 2017 −1.550 0.004 0.004 0.028 0.000 0.039 0.046
XENON1T 2018 −3.440 0.208 0.208 0.143 0.211 0.087 0.072
CDMSlite −16.678 0.000 0.000 0.000 0.000 0.000 0.000
CRESST-II −27.224 0.000 0.000 0.000 0.000 0.000 0.000
PICO-60 2017 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DarkSide-50 2018 −0.090 0.000 0.000 0.002 0.000 0.005 0.006
IceCube 79-string 0.000 0.000 0.000 0.000 0.000 0.001 0.001
Hadronic elements σs, σl −6.625 0.000 0.000 0.000 0.000 0.000 0.004
Local DM density ρ0 1.142 0.000 0.000 0.000 0.000 0.000 0.001
Most probable DM speed vpeak −2.998 0.000 0.000 0.000 0.000 0.000 0.003
Galactic escape speed vesc −4.382 0.000 0.000 0.000 0.000 0.000 0.001
αs 5.894 0.000 0.000 0.000 0.000 0.000 0.001
Higgs mass 0.508 0.000 0.000 0.000 0.000 0.000 0.000
Total −86.051 0.322 0.428 0.308 0.439 0.307 0.434

Table 6: Contributions to the delta log-likelihood (∆ lnL) at the best-fit point for the vector, Majorana and Dirac DM, compared
to an ‘ideal’ case, both with and without the requirement of saturating the observed relic density (RD). Here ‘ideal’ is defined
as the central observed value for detections, and the background-only likelihood for exclusions. Note that many likelihoods are
dimensionful, so their absolute values are less meaningful than any offset with respect to another point (for more details, see Sec.
8.3 of Ref. [81]).

5 Results

5.1 Profile likelihoods

In this section, we present profile likelihoods from the
combination of all Diver and T-Walk scans for the vec-
tor, Majorana and Dirac models. Profile likelihoods
in the vector model parameters are shown in Fig. 1,
with key observables rescaled to the predicted DM relic
abundance in Fig. 2. Majorana model parameter profile

likelihoods are shown in Figs. 3 and 4, with observables
in Fig. 5. For the Dirac model, we simply show the
mass-coupling plane in Fig. 6, as the relevant physics
and results are virtually identical to the Majorana case.

5.1.1 Vector model

Fig. 1 shows that the resonance region is tightly con-
strained by the Higgs invisible width from the upper-left
when mV < mh/2, by the relic density constraint from
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Fig. 2: Profile likelihoods for vector DM in planes of observ-
able quantities. Top: relic density. Centre: spin-independent
WIMP-proton cross-section, where solid lines show exclusions
from PandaX 2017 [89] and XENON1T 2018 [90], and the
dashed line shows the expected sensitivity of LZ [137]. Bottom:
present-day DM annihilation cross-section, where solid lines
show published exclusions from Fermi-LAT [86], and dashed
lines show projections from CTA [138] (see footnote 10 for more
details). Contour lines in each panel show the 1 and 2σ con-
fidence regions, while the white star shows the best-fit point.
Cross-sections are rescaled by the fraction of predicted relic
abundance f ≡ ΩV /ΩDM.

below, and by direct and indirect detection from the
right. Nevertheless, the resonant enhancement of the
DM annihilation at around mh/2, combined with the
fact that we allow for scenarios where Vµ is only a frac-
tion of the observed DM, permits a wide range of portal
couplings. Interestingly, the perturbative unitarity con-
straint (shown as dark grey) in Eq. (30) significantly
shortens the degenerate ‘neck’ region that appears ex-
actly at mh/2. Most notably, this is in contrast with
the scalar Higgs portal model [79, 80] where no such
constraint exists.

The high-mass region contains a set of solutions
at mV ' 10TeV and λhV & 1, which are constrained
by the relic density from below and direct detection
from the left. This second island is prominent in both
our previous studies of the scalar Higgs portal model
[79, 80] as well as other studies of the vector Higgs
portal [51]. Solutions that would otherwise exist in a
separate triangular region at mχ ' mh, λhV ' 1 are
now excluded by the perturbative unitarity constraint.

In Table 6, we show a breakdown of the contributions
to the likelihood at the best-fit point, which lies on the
lower end of the resonance region at λhV = 4.9× 10−4

and mV = 62.46GeV. If we demand that vector singlet
DM constitutes all of the observed DM, by requiring
ΩV h

2 to be within 1σ of the observed Planck relic
abundance, the best-fit point remains almost unchanged,
at λhV = 4.5 × 10−4 and mV = 62.46GeV. We give
details of these best-fit points, along with the equivalent
for fermion models, in Table 7.

In Fig. 2, we show the relic density of the vector
model (top), as well as the cross-sections relevant for di-
rect (centre) and indirect detection (bottom), all plotted
as a function of mass. Only models along the lower-λhV
edge of the two likelihood modes have relic densities
equal to the observed value. Larger values of λhV re-
sult in progressively larger annihilation cross-sections
and therefore more suppression of the relic density,
cancelling the corresponding increase in σSI

p and re-
sulting in an essentially constant rescaled cross-section
f ·σSI

p ∼ 10−45 cm−2 in the remaining allowed high-mass
region. Future direct detection experiments such as LZ
[137] will be able to probe the high-mass region in its
entirety. However, the best-fit point – near the bottom
of the resonance region – will remain out of reach. Fu-
ture indirect searches, such as the Cherenkov Telescope
Array (CTA)10 [138] will also be able to probe large
amounts of the high-mass region; however it does not
have the exclusion power that direct detection does for

10The CTA projections plotted in Fig. 2 assume an Einasto
density profile, and are based on 500 hours of observations of
the Galactic centre [138], with no systematic uncertainties. They
should therefore be considered optimistic [139, 140].



12

★
➤

➤

GAMBIT v1.2.0

G
AM B I T

Ω
χ h 2

=
0.119

−5

−4

−3

−2

−1

lo
g
1
0

( λ
h

χ
/Λ

χ
/G

eV
−

1
)

P
rofi

le
likelih

o
o
d

ratio
Λ

=
L

/L
m

a
x

50 55 60 65
mχ (GeV)

0.2

0.4

0.6

0.8

1.0

Majorana DM

Prof. likelihood

★

➤

➤

➤

➤

GAMBIT v1.2.0

G
AM B I T

Ωχh2 = 0.119

−5

−4

−3

−2

−1

lo
g
1
0

( λ
h

χ
/Λ

χ
/G

eV
−

1
)

P
rofi

le
likelih

o
o
d

ratio
Λ

=
L

/L
m

a
x

2.0 2.5 3.0 3.5
log10 (mχ/GeV)

0.2

0.4

0.6

0.8

1.0

Majorana DM

Prof. likelihood

Fig. 3: Profile likelihood in the (mχ, λhχ/Λχ) plane for Majorana fermion DM. Contour lines show the 1 and 2σ confidence regions.
The left panel gives an enhanced view of the resonance region around mχ ∼ mh/2. The right panel shows the full parameter space
explored in our fits. The greyed out region shows where our approximate bound on the validity of the EFT is violated, white stars
show the best-fit point for each mass region, and the edges of the preferred parameter space along which the model reproduces the
entire observed relic density are indicated with orange annotations.
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Fig. 4: Profile likelihood in the (mχ, ξ) and (ξ, λhχ/Λχ) planes of the Majorana fermion model. Contour lines show the 1 and 2σ
confidence regions. The white star shows the best-fit point.

Higgs portal models. Again, the best-fit point remains
out of reach.

5.1.2 Majorana fermion model

We show profile likelihoods in the (mχ, λhχ/Λχ) plane
in Fig. 3, with the low-mass region in the left panel
and the full mass region in the right panel. Here, there
are no longer two distinct solutions: the resonance and
high mass regions are connected. From the left panel in
Fig. 4, where we plot the profile likelihood in the (mχ, ξ)
plane, we can see that these regions are connected by the
case where the portal interaction is purely pseudoscalar,
ξ = π/2, leading to an almost complete suppression of

constraints from the direct detection experiments, as
given in Eq. (25).

The high mass region prefers ξ ∼ π/2, with a wider
deviation from π/2 permitted as mχ is increased, due to
direct detection constraints, which become less constrain-
ing at higher WIMP masses. There is an enhancement in
the permitted range of mixing angles at mχ & mh, due
to the contact term (∝ χχhh), where DM annihilation
to on-shell Higgses reduces the relic density, provid-
ing another mechanism for suppressing direct detection
signals, thus lifting the need to tune ξ.

The results are roughly symmetric about ξ = π/2,
however due to odd powers of cos ξ in the annihilation
cross-section (see Appendix B), there is a slight asym-
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metry for masses above mh. This is most clearly seen
in the triangular ‘wings’ at mχ & mh in Fig. 4 where
there are more solutions for ξ > π/2 than for ξ < π/2.

In the resonance region, we see the same triangular
region as in the vector DM case: bounded from below by
the relic density, and from the upper-left by the Higgs
invisible width. However, in contrast to the vector DM
case where direct detection limits squeeze the allowed
region from the upper right, the addition of the mixing
angle ξ as a free parameter allows for the fermionic
DM models to escape these constraints. As the pseu-
doscalar coupling is increased and the scalar coupling is
correspondingly decreased, the SI cross-section becomes
steadily more q2-suppressed, as seen in Eq. (25). Noting
that, the neck region at mχ = mh/2 is less well-defined
than in the vector and scalar DM cases above the tri-
angle region. Notably however, as the SI cross-section
becomes steadily more q2-suppressed, the annihilation
cross-section becomes less p-wave suppressed (Eq. 14),
and indirect detection comes to dominate the constraint
at the edge of the allowed parameter space just above
the resonance.

In the low-mass resonance region, virtually all values
of the mixing angle are permitted, seen clearly in the
left panel of Fig. 4, as even purely scalar couplings are
not sufficient for direct detection to probe the remaining
parameter space. The right panel also shows this in
the lower ‘bulb’: couplings between 10−3 GeV−1 and
10−5 GeV−1 are only permitted in the resonance region,
without any constraint on the mixing angle.

In the high-mass region, we see that unlike the
vector DM case, a wide range of WIMP masses be-
tween 100GeV and 10TeV are acceptable, with degen-
erate maximum likelihood. This is again due to the
q2-suppression of the direct detection constraints when
considering all possible values of ξ. The large triangular
high-mass region is constrained by the EFT validity
constraint from above (highlighted in dark grey) and
the relic density constraint from below.

In Fig. 5, we show the relic density (top) and scaled
cross-sections for direct (centre) and indirect detection
(bottom). For plotting purposes, we compute σSI at a
reference momentum exchange of q = 50MeV, typical
of direct detection experiments. Substantial fractions of
allowed parameter space lie close to current limits, but
unsurprisingly, large portions of the parameter space will
not be probed by future direct detection experiments,
due to the momentum suppression. This is also true
for indirect detection, where cross-sections are velocity
suppressed. However, given that the two suppressions
have opposite dependences on the mixing parameter, the
two probes will be able to compensate for each others’
weaknesses to a certain extent.
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Fig. 5: Same as Fig. 2 but for Majorana fermion DM. Again,
f ≡ Ωχ/ΩDM. For illustration, as there is a q2-suppression in
the spin-independent cross-section (see Eq. 25), we show σSI
computed at a reference momentum exchange of q = 50MeV.
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Model Relic density condition λhX mX (GeV) ξ (rad) ΩXh
2 ∆ lnL

Vector ΩV h
2 . ΩDMh

2 4.9× 10−4 62.46 — 9.343× 10−2 0.322
ΩV h

2 ∼ ΩDMh2 4.5× 10−4 62.46 — 1.128× 10−1 0.428
Majorana Ωχh

2 . ΩDMh
2 4.5× 10−2 GeV−1 138.4 1.96 6.588× 10−8 0.308

Ωχh
2 ∼ ΩDMh2 6.3× 10−6 GeV−1 61.03 1.41 1.128× 10−1 0.439

Dirac Ωψh
2 . ΩDMh

2 6.3× 10−4 GeV−1 9.950× 103 2.06 1.953× 10−2 0.307
Ωψh

2 ∼ ΩDMh2 2.6× 10−4 GeV−1 9.780× 103 2.11 1.129× 10−1 0.434

Table 7: Details of the best-fit parameter points for vector, Majorana and Dirac DM Higgs portal models, both with and without
the requirement that the predicted relic density is within 1σ of the Planck observed value. Here, X ∈ {V, χ, ψ} and the dimensionful
nature of the coupling is implied for the fermion cases. We do not include the values of nuisance parameters, as they do not differ
significantly from the central values of their likelihoods.

Table 6 shows a breakdown of the contributions
to the likelihood at the best-fit point, which lies in
the high mass region at mχ = 138.4GeV, λhχ/Λχ =
4.5 × 10−2 GeV−1 and ξ = 1.96 rad (Table 7). When
we demand that χ saturates the observed DM relic
abundance, the best-fit point shifts to the lower end
of the resonance region at mχ = 61.03GeV, λhχ/Λχ =
6.3× 10−6 GeV−1 and ξ = 1.41 rad.

5.1.3 Dirac fermion model

The results from our low- and high-mass scans of the
Dirac fermion model are very similar to those for the
Majorana model. We therefore only show results in the
(mψ, λhψ/Λψ) plane in Fig. 6.

In Table 6, we show a breakdown of the contributions
to the likelihood at the best-fit point. This point lies
towards the upper end of the high mass region, where
λhψ/Λψ = 6.3 × 10−4 GeV−1, mψ = 9.95TeV and ξ =
2.06 rad. If ψ makes up all of the DM, the best-fit point

shifts slightly to the bottom of the high mass triangle
at λhψ/Λψ = 2.6 × 10−4 GeV−1, mψ = 9.78TeV and
ξ = 2.11 rad. We compare the locations of these best-fit
points to those from the vector and Majorana models
in Table 7.

5.1.4 Goodness of fit

In Table 6, we show the contribution to the log-likelihood
for the best-fit points of the vector, Majorana and Dirac
DM models. By equating ∆ lnL to half the “likelihood
χ2” of Baker & Cousins [141], we can compute an ap-
proximate p-value for each best-fit point against a null
hypothesis. We take this null to be the ‘ideal’ case, which
we define as the background-only contribution in the
case of exclusions, and the observed value in the case of
detections.

For the vector DM model, using either one or two
effective degrees of freedom, we find a p-value between
roughly 0.4 and 0.7. Requiring the relic density of Vµ
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Fig. 7: Marginalised posterior distributions in the (mV , λhV ) plane for vector DM. Contour lines show the 1 and 2σ credible
regions. The left panel gives the result of a scan restricted to the resonance region around mV ∼ mh/2. The right panel shows
a full-range parameter scan. The low-mass mode is sufficiently disfavoured in the full-range scan that it does not appear in the
righthand panel. The greyed out region shows points that do not satisfy Eq. (30). The posterior mean is shown by a white circle,
while the maximum likelihood point is shown as a white star. The edges of the preferred parameter space along which the model
reproduces the entire observed relic density are indicated with orange annotations.

to be within 1σ of the Planck value, the p-value be-
comes p ≈ 0.35–0.65. For both the Majorana and Dirac
fermion models, we also find p ≈ 0.4–0.7, falling to 0.35–
0.65 with the relic density requirement. All of these are
completely acceptable p-values.

5.2 Marginal posteriors

The marginal posterior automatically penalises fine-
tuning, as upon integration of the posterior, regions
with a limited ‘volume of support’ over the parameters
that were integrated over are suppressed.11 As usual,
the marginal posteriors depend upon the choice of priors
for the free model parameters, which are summarised in
Tables 3 and 4. We choose flat priors where parameters
are strongly restricted to a particular scale, such as the
mixing parameter and the DM mass in scans restricted
to the low-mass region. For other parameters, in order
to avoid favouring a particular scale we employ logarith-
mic priors. Note that in this treatment for the fermionic
DM models we have not chosen priors that favour the
CP-conserving case. We instead present posteriors for
this well motivated case separately, and later in section
6 we perform a Bayesian model comparison between a
CP-conserving fermionic DM model and the full model
considered here.

11By ‘volume of support’, we mean the regions of the parameter
space that have a non-negligible likelihood times prior density.

5.2.1 Vector model

To obtain the marginal posterior distributions, we per-
form separate T-Walk scans for the low and high mass
regimes, shown in Fig. 7. Within each region we plot
the relative posterior probability across the parameter
ranges of interest.

In the left panel of Fig. 7, the scan of the resonance
region shows that the neck region is disfavoured after
marginalising over the nuisance parameters, particularly
mh, which sets the width of the neck. This dilutes the
allowed region due to volume effects.

In the full-mass-range scan, the fine-tuned nature
of the resonance region is clearly evident. Although
the best-fit point in the profile likelihood lies in the
resonance region, the posterior mass is so small in the
entire resonance region that it drops out of the global
2σ credible interval.

5.2.2 Majorana fermion model

As already seen in the profile likelihoods, for the case
of Majorana fermion DM, the presence of the mixing
parameter ξ leads to a substantial increase in the pre-
ferred parameter region (see Fig. 8). In the resonance
region (left panel), there is now a thin neck-like region
at mχ ≈ mh/2. This neck region is the same one seen
in both the scalar and vector profile likelihoods, but
falls within the 2σ credible region of the Majorana pos-
terior, as the admittance of ξ reduces direct detection
constraints (Eq. 25), softening the penalisation from in-
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Fig. 8: Marginalised posterior distributions in the (mχ, λhχ/Λχ) plane for Majorana fermion DM. Contour lines show the 1 and 2σ
credible regions. The left panel gives the result of a scan restricted to the resonance region around mχ ∼ mh/2. The right panel
shows a full-range parameter scan. The greyed out region shows where our approximate bound on the validity of the EFT is violated.
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Fig. 9: Marginalised posterior distributions in the (mχ, ξ) plane for Majorana fermion DM. Contour lines show the 1 and 2σ
credible regions. The left panel gives the result of a scan restricted to the resonance region around mχ ∼ mh/2. The right panel
shows a full-range parameter scan. The posterior mean is shown by a white circle, while the maximum likelihood point is shown as
a white star.

tegrating over nuisance parameters. When we compute
the posterior over the full mass range, we once again
find the resonance region to be somewhat disfavoured,
but now there are large parameter regions with high
posterior probabilities for mχ > mh.

Nevertheless, direct detection does have a significant
impact on the high-mass region, in spite of the mixing
parameter ξ. While the 2σ contour is roughly triangular,
the points with highest posterior probability (i.e. within
the 1σ contours) are split into two smaller triangles. The
approximately rectangular region that separates these
two triangular regions is disfavoured by the combination

of volume effects and direct detection, which requires ξ
to be tuned relatively close to π/2.

To better understand the role of tuning in ξ in the
process of marginalisation, we show the marginalised
posterior in the (mχ, ξ) and (ξ, λhχ/Λχ) planes in Figs. 9
and 10, respectively. Fig. 9 provides a clear understand-
ing of the differences between the marginalised poste-
riors in Fig. 8 and the profile likelihood in Fig. 3. In
the resonance region (left panel), the neck region is less
prominent in the marginalised posterior because direct
detection limits become very constraining as soon as
mχ > mh/2 and the mixing parameter is forced to be
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Fig. 10: Marginalised posterior distributions in the (λhχ/Λχ, ξ) plane for Majorana fermion DM. Contour lines show the 1 and 2σ
credible regions. The left panel gives the result of a scan restricted to the resonance region around mχ ∼ mh/2. The right panel
shows a full-range parameter scan. The posterior mean is shown by a white circle, while the maximum likelihood point is shown as
a white star.

very close to π/2. In the full-range scan (right panel)
we see the annihilation channel χχ→ hh open up, thus
allowing a greater range of values for ξ, leading to an
enhancement in the marginalised posterior probability.
This clearly corresponds to the 1σ triangular region in
the mass-coupling plane at mχ ≈ mh, in the right hand
panel of Fig. 8.

In the left panel of Fig. 10, which focuses on the
resonance region, we see two separate solutions for the
mixing angle and coupling: the larger island at lower
coupling corresponds to the triangular region at mχ <

mh/2, permitting all values of ξ, and the thinner solution
at larger couplings reflects the solution at mχ > mh/2,
where the scalar coupling between the Higgs and the
Majorana DM needs to be sufficiently small (i.e. ξ ∼ π/2)
to evade direct detection limits. The two regions appear
disconnected because the intermediate parameter points
require so much tuning that they fall outside of the 2σ
credible regions upon marginalisation. Considering the
full mass range (see the right panel in Fig. 10), we find
that the lower ‘bulb’ seen in the profile likelihood in
Fig. 4 is hardly visible in the marginalised posterior
when integrating over the nuisance parameters, due to
a lower posterior volume in the resonance region.

We can condense the information from Figs. 9 and 10
further by marginalising over all parameters except for
ξ, thus obtaining a 1D posterior probability. The result
is shown in Fig. 11, where the preference for ξ ≈ π/2
becomes clear. In other words, for the case of Majorana
fermion DM, there is a strong preference for permitting
an increased admixture of pseudoscalar-type couplings
to suppress the constraints from direct detection and
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Fig. 11: Marginalised posterior distribution for the mixing angle
ξ for Majorana fermion DM in the full-mass-range scan. The
posterior mean is shown by a blue circle, while the maximum
likelihood point is shown as a red star.

the relic density, due to a momentum and velocity sup-
pressed cross-section respectively.

For comparison, we consider the CP-conserving case
with fixed ξ = 0 in Fig. 12. As expected from the
discussion above, we find that the permitted parameter
space shrinks vastly with respect to the case where the
mixing parameter is allowed to vary (see Fig. 8). In
the resonance region (left panel), we see that direct
detection, the invisible Higgs width and relic density
impose strong constraints from the left, upper-left and
below, respectively. No neck region exists because the
direct detection constraints are too strong, overlapping
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with constraints on the invisible width of the Higgs
boson. In the full-range scan (right panel), we find that
the only surviving parameter space is split into the
resonance region, and two small islands, at mχ ∼ mh

andmχ ∼ 5TeV. These islands are constrained by direct
detection and the EFT validity requirement. Both will
be ruled out by the next generation of direct detection
experiments, if no DM signal is observed.

Our analysis of the Dirac fermion model parameter
space is identical to the Majorana fermion one, whether ξ
is fixed or left as a free parameter, so to avoid repetition
we omit those results.

It should be clear from the comparison between
Figs. 8 and 12 that the CP-conserving case (ξ = 0) is
strongly disfavoured relative to the case where ξ is al-
lowed to vary. We will make this qualitative observation
more precise in the following section.

6 Bayesian model comparison

6.1 Background

To be able to comment on the relative plausibility of the
different Higgs portal models, we must also perform a
quantitative model comparison. To do this, we compute
Bayes factors for pairs of models, sayM1 andM2 as
[142–144]

B ≡ Z(M1)
Z(M2) , (34)

where Z(M) is the evidence of a modelM. This is the
integral of the likelihood of the observed data L(D|θ)
over the possible parameter values θ in that model,
weighted by the prior on the parameters P (θ),

Z(M) ≡
∫
L(D|θ)P (θ) dθ . (35)

We perform this integration using MultiNest [132, 133],
which is designed to calculate the Bayesian evidence. The
final odds ratio (of the probability thatM1 is correct
to the probability that M2 is correct) is the product
of the Bayes factor and the ratio of any prior beliefs
P (M1)/P (M2) that we might have in these models,

P (M1|D)
P (M2|D) = B

P (M1)
P (M2) . (36)

In our analysis, we take the prior probability of every
model to be equal such that the factor,

P (M1)/P (M2) = 1 (37)

for all pairs of models. Thus, the odds ratio is sim-
ply given by the Bayes factor. Note that even when

computing the evidence for or against CP violation in
the fermionic model below, we do not apply any further
prior in favour of CP conservation. The volume integrals
involved in the Bayes factor automatically implement
the concept of naturalness via Occam’s razor, penalis-
ing models with more free parameters if they do not
fit the observed data any better than models with less
parameters.

From Eq. (35), we can see that the evidence of a
model depends on the prior choices for its parameters.
This prior on the model parameters (along with the
priors on the models themselves) makes the results of
Bayesian model comparison inherently prior-dependent.
However, the influence of common parameters treated
with identical priors in both models approximately can-
cels when taking the ratio of evidences, as in Eq. (34).
The overall prior dependence of the Bayes factor can
thus be minimised by minimising the number of non-
shared parameters between the models being compared.
The best case is where one model is nested inside the
other, and corresponds simply to a specific choice for
one of the degrees of freedom in the larger model. In
this case, the leading prior dependence is the one com-
ing from the chosen prior on the non-shared degree of
freedom. Thus, we first investigate the question of CP vi-
olation in the Higgs portal, which we can address in this
manner, before going on to the more prior-dependent
comparison of the broader models.

6.2 CP violation in the Higgs portal

We perform Bayesian model comparison for the
fermionic Higgs portal DM, and nested variants of it, by
comparing the CP-conserving case (ξ = 0) to the model
where the CP phase of the portal coupling is allowed
to vary freely. Due to the similarity of the likelihood
for the Dirac and Majorana fermion models, we do this
for the Majorana fermion model only. We carry out this
exercise for two different parametrisations of the model,
corresponding to two different priors on the larger pa-
rameter space in which the CP-conserving scenario is
nested:

1. Assuming the parametrisation that we have dis-
cussed thus far for the Majorana model, taking a uni-
form prior for ξ and a logarithmic prior for λhχ/Λχ.
This corresponds to the assumption that some single
mechanism uniquely determines the magnitude and
phase of both couplings.

2. Assuming that the scalar and pseudoscalar couplings
originate from distinct physical mechanisms at un-
related scales, such that they can be described by
independent logarithmic priors. The post-EWSB La-
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Fig. 12: Marginalised posterior distributions for Majorana fermion DM with fixed ξ = 0. Contour lines show the 1 and 2σ credible
regions. The left panel gives the result of a scan restricted to the resonance region around mχ ∼ mh/2. The right panel shows a
full-range parameter scan. The posterior mean is shown by a white circle, while the maximum likelihood point is shown as a white
star. The edges of the preferred parameter space along which the model reproduces the entire observed relic density are indicated
with orange annotations.

grangian in this parametrisation contains the terms

Lχ ⊃ −
1
2

(
gs

Λs
χχ+ gp

Λp
χiγ5χ

)(
v0h+ 1

2h
2
)
.

(38)

In this case, the parameters ξ and λhχ/Λχ from
the first parametrisation are replaced by gs/Λs and
gp/Λp. In this parametrisation, the Bayes factor may
be sensitive to the range of the prior for the couplings,
as the normalisation factor does not cancel when
computing the Bayes factor for the CP-conserving
scenario. We choose −6 ≤ log10(g/Λ) ≤ 0 for the
couplings when computing the Bayes factors in this
parametrisation, in line with the prior that we adopt
for λhχ/Λχ in parametrisation 1.

The CP-conserving model is nested within both of these
models, as ξ = 0 in the first, and as gp/Λp = 0 in the
second (although the exact limit of ξ = 0 is not contained
within our chosen prior for the second parameterisation,
seeing as we choose a logarithmic prior on gp). As stated
in Eq. 37, the ratio of the prior probabilities for these
models is taken to be 1 here, and is not related to priors
of parameters discussed above. We are comparing two
separate models: one with a pure CP-even coupling
between the DM fermion and the Higgs and another
model where there is also a pseudoscalar coupling, which
a priori is very unlikely to be zero.

In Table 8, we give the odds ratios against the CP-
conserving case in each of these parametrisations. The
value given in the final column of this table is the ratio

of the evidence for the CP-violating model to the CP-
conserving case. Depending on the choice of parametri-
sation, we see that there is between 140:1 and 70:1 odds
against the CP-conserving version of the Majorana Higgs
portal model. The similarity in order of magnitude12

between these two results is expected, as it reflects
the relatively mild prior-dependence of the Bayes factor
when performing an analysis of nested models that differ
by only a single parameter. Given the similarity of the
likelihood functions in the Majorana and Dirac fermion
models, the odds against the pure CP-conserving ver-
sion of the Dirac fermion Higgs portal model can also
be expected to be very similar.

The odds ratio tells us the relative plausibility of
one model relative to the other. According to the stan-
dard scale frequently used for interpreting Bayesian
odds ratios (the Jeffreys scale; [142, 143]), this consti-
tutes strong evidence against pure CP-even coupling
in fermionic Higgs portal models. The preference for a
CP-violating coupling can also be seen in Fig. 11, where
there is a clear preference for ξ = π/2, whereas the
CP-even coupling falls outside of the 2σ credible region.

6.3 Scalar, Vector, Majorana or Dirac?

We also carry out model comparison between the differ-
ent Higgs portal models: scalar, vector, Majorana and
Dirac. As these models are not nested, they each have
unique parameters. This means that there is no a priori
12Odds ratios are best conceived of in a logarithmic sense, so a
factor of 2 difference is of negligible importance.
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Model Comparison model and priors Odds
ξ = 0 mχ: log λhχ/Λχ: log ξ: flat 70:1

gp/Λp = 0 mχ: log gs/Λs: log gp/Λp: log 140:1

Table 8: Odds ratios for CP violation for the singlet Majorana
fermion Higgs portal model. Here the odds ratios are those
against a pure CP-even Higgs portal coupling, as compared to
two different parametrisations (and thus priors) of the model in
which the CP nature of the Higgs portal can vary freely.

relationship between their respective parameters that
would allow the definition of equivalent priors on, e.g.,
masses or couplings in two different models. The prior
dependence of the Bayes factor is therefore unsuppressed
by any approximate cancellations when taking the ratio
of evidences in Eq. (34). We caution that the resulting
conclusions are consequently less robust than for the
nested Majorana models. For this exercise, we update
the fit to the scalar model from Ref. [79] to incorporate
the likelihood function and nuisances that we use in the
current paper.

We find that the scalar Higgs portal model has the
largest evidence value in our scans, but is comparable
to the fermion DM models. In Table 9, we give the odds
ratios against each of the Higgs portal models, relative
to the scalar model. The data have no preference be-
tween scalar and either form of fermionic Higgs portal
model, with odds ratios of 1:1. The vector DM model is
disfavoured with a ratio of 6:1 compared to the scalar
and fermion models; this constitutes ‘positive’ evidence
against the vector DM model according to the Jeffreys
scale, though the preference is only rather mild. Over-
all, there is no strong preference for Higgs portal DM
to transform as a scalar, vector or fermion under the
Lorentz group.

As we find no strong preference between the different
Higgs portal DM models using logarithmic priors, we
omit a dedicated prior sensitivity analysis. If different
assumptions on priors were to yield a stronger preference
for any of the models under consideration, the only
conclusion would be that such a preference is not robust
to changes in the prior. The situation is hence different
from the one in Sec. 6.2, where we did find a strong
preference against the CP-conserving model, which we
showed to be largely independent of the assumed prior.

7 Conclusions

In this study we have considered and compared simple
extensions of the SM with fermionic and vector DM
particles stabilised by a Z2 symmetry. These models are
non-renormalisable, and the effective Higgs-portal cou-
pling is the lowest-dimension operator connecting DM to

Model Parameters and priors Odds
S mS : log λhS : log 1:1
Vµ mV : log λhV : log 6:1
χ mχ: log λhχ/Λχ: log ξ: flat 1:1
ψ mψ: log λhψ/Λψ: log ξ: flat 1:1

Table 9: Odds ratios against each singlet Higgs portal DM
model with Z2 symmetry, relative to the scalar model.

SM particles. Scenarios of this type are constrained by
the DM relic density predicted by the thermal freeze-out
mechanism, invisible Higgs decays, and direct and indi-
rect DM searches. Perturbative unitarity and validity
of the corresponding EFT must also be considered.

We find that the vector, Majorana and Dirac mod-
els are all phenomenologically acceptable, regardless of
whether or not the DM candidate saturates the observed
DM abundance. In particular, the resonance region
(where the DM particle mass is approximately half the
SM Higgs mass) is consistent with all experimental con-
straints and challenging to probe even with projected fu-
ture experiments. On the other hand, larger DM masses
are typically tightly constrained by a combination of di-
rect detection constraints, the relic density requirement
and theoretical considerations such as perturbative uni-
tarity. Our results show that with the next generation of
direct detection experiments (e.g., LZ [137]), it will be
possible to fully probe the high-mass region for both the
vector and CP-conserving fermion DM model. Future
indirect experiments such as CTA [138] will be sensitive
to parts of viable parameter space at large DM masses,
but will have difficulty in probing the resonance region.

An interesting alternative is fermionic DM with a CP-
violating Higgs portal coupling, for which the scattering
rates in direct detection experiments are momentum-
suppressed. By performing a Bayesian model compari-
son, we find that data strongly prefers the model with
CP violation over the CP-conserving one, with odds of
order 100:1 (over several priors). This illustrates how
increasingly tight experimental constraints on weakly-
interacting DM models are forcing us to abandon the
simplest and most theoretically appealing models, in
favour of more complex models.

We have also used Bayesian model comparison to
determine the viability of the scalar Higgs portal model
relative to the fermionic and vector DM models. We
find a mild preference for scalar DM over vector DM,
but no particular preference between the scalar and the
fermionic model. This conclusion may however quickly
change with more data. Stronger constraints on the
Higgs invisible width will further constrain the resonance
region and the combination of these constraints with



21

future direct detection experiments may soon rule out
the vector model.

Our study clearly demonstrates that, in the absence
of positive signals, models of weakly-interacting DM
particles will only remain viable if direct detection con-
straints can be systematically suppressed. This makes
it increasingly interesting to study DM models with
momentum-dependent scattering cross-sections. A sys-
tematic study of such theories will be left for future
work. Conversely, Higgs portal models provide a natural
framework for interpreting signals in the next genera-
tion of direct and indirect detection experiments. An
advanced framework for such a reinterpretation using
Fisher information will be implemented in future ver-
sions of GAMBIT.
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Appendix A: New features in DDCalc

In this appendix, we discuss the new features of DDCalc
2.0.0, namely the treatment of general non-relativistic
effective operators and the extended interface for imple-
menting new analyses. For a more detailed illustration
of the new features, we refer to the example programs
in DDCalc/examples/, which are provided in both C++
and Fortran90.13 For an introduction into the basic
structure of DDCalc, we refer to Ref. [102].

A.1: Non-relativistic effective operators

Up to second order in velocity and momentum transfer,
elastic scattering of DM particles off nucleons via the
exchange of a heavy mediator can be fully described
by a set of 18 effective operators. These operators are
conventionally denoted by O1, O3, . . . , O15, O17, O18
(note that O2 and O16 are commonly omitted), as well
as q2O1 and q2O4 [145–147]. Each of these operators
can arise independently for scattering off protons and
neutrons or, equivalently, for the isoscalar (τ = 0) and
the iso-vector (τ = 1) current. As the interpretation of
these operators also depends on the total spin sχ of the
DM particle, the interactions of DM are fully specified
by a total of 37 parameters.

In order to consider a WIMP with general coupling
structure, the user first initialises a generic WIMP ob-
ject and then passes this object to specialised functions
that define the coupling structure. For example, the
following code initialises a WIMP with mass 50 GeV
and spin 1/2, and sets the isoscalar and iso-vector coeffi-

13Note that DDCalc 2.0.0 no longer maintains a command line
interface, so that the example files are in fact the only executables
that are generated when compiling DDCalc.

cients of the operator O3 to 0.1 GeV−2 and 0.2 GeV−2,
respectively:14

#include "DDCalc.hpp"
int WIMP;
WIMP = DDCalc::InitWIMP();
DDCalc::SetWIMP_NREffectiveTheory(WIMP,50,0.5);
DDCalc::SetNRCoefficient(WIMP,3,0,0.1);
DDCalc::SetNRCoefficient(WIMP,3,1,0.2);

The second argument of the final function corresponds
to the index of the operator to be set, with q2O1 and
q2O4 being denoted by −1 and −4, respectively.

DDCalc then automatically performs the matching
onto the appropriate nuclear response functions, which
are evaluated based on the parametrisation and the
tabulated values provided in Ref. [146]. These tables
are provided in the subfolder DDCalc/data/Wbar/ for
a range of relevant isotopes. Additional files can be
provided to implement additional isotopes, and existing
files can be replaced to study form factor uncertainties.

Of course, it is still possible to specify the WIMP
coupling structure in the traditional way, e.g. by pro-
viding the effective couplings for spin-independent (SI)
and spin-dependent (SD) interactions with protons and
neutrons. In this case, DDCalc 2.0.0 will by default
use the conventional form factors (i.e. the Helm form
factor for SI interactions and the form factors from
Ref. [148] for SD interactions, which can be found
in DDCalc/data/SDFF/). In order to use the form fac-
tors from Ref. [146] also for standard interactions, one
can set the global option PreferNewFF contained in
DDCalc/src/DDConstants.f to true.

Let us finally emphasize that for general non-
relativistic operators, the differential event rate de-
pends not only on the conventional velocity integral∫
f(v)/v d3v but also on the second velocity integral∫
v f(v) d3v. As before, these velocity integrals are by

default evaluated using the Standard Halo Model (SHM)
with parameters that can be set externally. It is however
also possible to provide tabulated velocity integrals in
order to study velocity distributions that differ from the
SHM. An illustration of this feature is provided in the
example files DDCalc/examples/DDCalc_exclusionC.
cpp and DDCalc/examples/DDCalc_exclusionF.f90,
which demonstrates how to calculate an exclusion limit
for a given WIMP model and a given velocity distribu-
tion.

14The normalisation of the non-relativistic operators corresponds
to a DM particle that is not self-conjugate. Hence, for a self-
conjugate particle all operator coefficients have to be multiplied
by a factor of two.
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A.2: Extended detector interface

The need to implement increasingly complex direct
detection experiments has led to substantial exten-
sions of how experiments can be defined in DDCalc
2.0.0. The details of this new interface are described in
DDCalc/src/DDDetectors.f, but we review the most
important new features here.

First of all, it is now possible to define a number of dif-
ferent signal regions for each experiment and to specify
the number of observed events and expected background
events for each signal region. The simplest application
is the implementation of a binned analysis, but it is
also possible to define more complex signal regions, pro-
vided they can be characterised by a simple acceptance
function ε(ER), which quantifies the probability that a
nuclear recoil with physical recoil energy ER will lead to
a signal within the signal region. DDCalc 2.0.0 will then
determine the expected signal in each signal region and
calculate the binned Poisson likelihood. If the expected
background in a signal region is set to zero, DDCalc 2.0.0
will interpret this to mean that the background level
is unknown. In this case, the bin will only contribute
to the total likelihood if the predicted number of signal
events exceeds the number of observed events. The ex-
ample files DDCalc/examples/DDCalc_exampleC.cpp
and DDCalc/examples/DDCalc_exampleF.f90 illus-
trate how the predicted number of events in each signal
region, as well as the resulting likelihoods, can be evalu-
ated for specific parameter points.

Alternatively, one can also analyse experiments
with unknown backgrounds using the optimum interval
method by specifying the bins in such a way that their
boundaries correspond to the energies of the observed
events. Note that this means that it is typically not pos-
sible to use the binned Poisson method and the optimum
interval method for the same choice of binning. A user
wishing to compare these two analysis strategies should
therefore implement them as separate experiments.

A related new feature is that it is now possible in
DDCalc 2.0.0 to specify separate efficiency functions
for each element (or indeed each isotope) in the target
material. This is necessary for example if the efficiency
of analysis cuts depends on the type of recoiling nucleus
(as in CRESST) or if the low-energy threshold differs for
different elements (as in PICO). For experiments with
several different elements and several different signal
regions, the number of efficiency functions that need to
be specified can potentially be quite large. The preferred
way to specify efficiency functions in DDCalc 2.0.0 is to
provide external files with tabulated values, which by
default are stored in DDCalc/data/. An illustration of

this new structure can be found in the definition of the
CRESST-II experiment (see below).

It is important to emphasize that the grid used to
define the efficiency functions is also used to evaluate
the other contributions to the differential event rate
(i.e., form factors and velocity integrals). The number
of grid points used in the definition of the efficiency
functions directly influences the computation time and
the precision of the result. In particular, it is essen-
tial to also provide a sufficiently large number of grid
points in energy ranges where the efficiency is approx-
imately constant. The function RetabulateEfficiency in
DDCalc/src/DDDetectors.f can be used to generate
a fine efficiency grid from a coarse one, using linear
interpolation between the provided values.

A.3: New experiments

DDCalc 2.0.0 ships with a broad range of new experi-
mental analyses. In particular, there are now a number
of low-threshold experiments, so that DDCalc 2.0.0 can
now also be used to reliably calculate constraints on
light DM. Moreover, we have implemented a number
of planned experiments, which can be used to derive
projected sensitivities.

CRESST-II: The CRESST-II results [92] are based
on 52.2 kg days using the Lise detector module. Our im-
plementation follows Refs. [149, 150], i.e., we assume an
energy resolution of σE = 62 eV and take the cut survival
probabilities from Ref. [149]. To avoid unnecessarily fine
binning in energy ranges where the expected signal rates
are small, we divide the energy range between 0.3 and
5.0 keV into 10 bins of increasing size. In the absence
of a background model, we treat all observed events as
potential signal events.

CDMSlite: The analysis of CDMSLite is based
on an exposure of 70.14 kg days [91, 151]. The energy-
dependent signal efficiency is taken from Ref. [91], which
also describes the procedure for converting nuclear recoil
energies into electron equivalent energies (eVee). We
follow the same approach as in Ref. [150] to determine
the detector resolution, divide the energy range from 60
to 500 eVee into 10 bins of increasing size and assume
no background model.

DarkSide-50: We implement the results from a
search for heavy DM particles in the DarkSide-50 detec-
tor based on a total exposure of 19.6 · 103 kg days [94],
taking the energy-dependent acceptance function from
Ref. [94].

PandaX-II: Since the most recent data taking pe-
riod of the PandaX-II experiment (Run 10) has substan-
tially lower background levels than previously analysed
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data sets [88, 89], we implement it as an independent
experiment (called PandaX_2017) rather than simply
combining all runs. We use the same detector efficiency
for the new data set as for our previous implementation
of PandaX-II (see Ref. [102]) and assume a background
expectation of 1.55 events.15 It is then straight-forward
to perform a combination of the different data sets by
multiplying the individual likelihood functions.

XENON1T: We use the same implementation of
XENON1T [90] as described in detail in Ref. [80]. To
reduce background levels, we focus on the central de-
tector region with a mass of 0.65 t, and consider only
events between the median of the nuclear recoil band
and the lower 2σ quantile. We furthermore divide this
signal region into two energy bins, which correspond
to S1 ∈ [3PE, 35PE] and S1 ∈ [35PE, 70PE]. We esti-
mate the expected backgrounds in the two bins to be
0.46 and 0.34 events, respectively, compared to 0 and 2
observed events.

LZ: Our implementation of the LZ experiment [152]
follows Ref. [153]. In particular, we assume an exposure
of 5.6 ·106 kg days with a resolution of σE/ER = 0.065 +
0.24 (1 keV/ER)1/2 and an acceptance of 50% for nuclear
recoils. We consider 6 evenly-spaced bins in the range
from 6 to 30 keV and assume a background of 0.394
events per bin.

PICO-500: Our implementation of PICO-500 fol-
lows the information provided in Ref. [154]. PICO-500
plans to employ a C3F8 target with 250 L fiducial vol-
ume. Six live-months of data will be taken with a low
threshold of 3.2 keV, which we implement using the same
acceptance function as for PICO-2L [155], while 12 live-
months will be taken with a threshold of 10 keV. We
treat the two thresholds as two separate bins, in which
case the expected backgrounds are 3 and 0.85 events,
respectively.

DARWIN: The DARWIN experiment aims for
a total exposure of 7.3 · 107 kg days with 30% accep-
tance for nuclear recoils and 99.98% rejection of elec-
tron recoils [156]. We assume an energy resolution of
σE/ER = 0.05 + (0.05 keV/ER)1/2 [157] and consider
5 equally-spaced bins between 5 and 20 keV. The dom-
inant background is due to coherent neutrino-nucleus
scattering, which we estimate from Fig. 3 in Ref. [157].

DarkSide-20k: We assume a total exposure of 3.65·
107 kg days and estimate the energy resolution to be
σE/ER = 0.05+(2 keV/ER) [158]. To model the detector
threshold, we implement the acceptance function for
the f200-cut from Fig. 92 in Ref. [158]. We divide the

15The expected number of background events is quoted as 1.8±
0.5. Assuming the uncertainty in this estimate to be Gaussian,
the likelihood is maximized for a background expectation of
1.8− 0.52 = 1.55 events.
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Fig. 13: 90%C.L. upper limits on the spin-independent DM-
nucleon scattering cross-section from CRESST-II, CDMSlite,
DarkSide-50, PandaX-II and XENON1T. The solid curves show
the limits obtained using DDCalc, while the dashed curves cor-
respond to the limits derived by the collaborations [89–92, 94].
Note that close to threshold the exclusion limits depend sen-
sitively on the detector response and an accurate modeling in
DDCalc is very challenging.

energy range between 30 and 80 keV into 10 equally-
spaced bins, and assume a background of 0.04 events
per bin from instrumental background, as well as a
total of 1.6 events (with non-trivial energy dependence)
from coherent neutrino scattering, which we obtain by
rescaling the results from Ref. [159].

Note that the number of observed events in each
bin must be an integer in DDCalc, so it is typically not
possible to set the observed number of events equal to
the expected number of events in order to calculate
the expected sensitivity of a future experiment. By de-
fault, the observed number of events is set to the integer
closest to the background expectation, but this intro-
duces a bias for example if there is a large number of
bins with less than 0.5 expected background events. To
accurately calculate expected sensitivities, one should
simulate Poisson fluctuations in each bin, calculate the
corresponding exclusion limits, and then construct the
median exclusion. For an alternative approach, using
Fisher information, we refer to Ref. [160].

Lastly, in Fig. 13 we show a comparison of the upper
bounds on the spin-independent scattering cross-section
determined using DDCalc with the official limits ob-
tained by the respective collaborations. In all cases we
find good agreement, validating our implementions of
the experimental likelihoods in DDCalc. Also for the
planned experiments described earlier we have con-
firmed that our sensitivity estimates are in sufficient
agreement with the expectations published by the col-
laborations [152, 154, 156, 158].
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Appendix B: Annihilation cross-sections

In our study, the final states from the DM annihilation include W+W−, ZZ, τ+τ−, tt̄, bb̄, cc̄ and hh. For all final
states except hh, the DM annihilation proceeds solely via an s-channel Higgs exchange. For massive gauge bosons,
the annihilation cross-section is

σvcms
rel = P (X) s8π δiviλ

2
hX |Dh(s)|2

(
1− 4xi + 12x2

i

)
, (B.1)

where P (X) is defined in Eq. (14), i = {W, Z}, λhX ∈ {λhV , λhχ/Λχ, λhψ/Λψ}, δW = 1, δZ = 1/2, xi ≡ m2
i /s,

vi =
√

1− 4xi, and |Dh(s)|2 is the full squared Higgs propagator given by

|Dh(s)|2 = 1
(s−m2

h)2 +mhΓh(
√
s)
. (B.2)

For fermion final states, the annihilation cross-section is given by

σvcms
rel = P (X)

m2
f

4π Cfv
3
fλ

2
hX |Dh(s)|2 , (B.3)

where Cf is a colour factor. For leptons, Cf = 1, whereas for quarks, it includes an important 1-loop vertex
correction given by [161]

Cf = 3
{

1 +
[

3
2 log

(
m2
f

s

)
+ 9

4

]
4αs
3π

}
. (B.4)

For the hh final state, additional contributions appear from the 4-point contact interaction as well as DM exchange
in t- and u-channels. The annihilation cross-section for V V → hh is

σvcms
rel (V V → hh) = λ2

hV vh
2304πsx4

V

|Dh(s)|2
[

8βv2
0λhV

1− 2x2
h

coth−1 β×{
2s (2xh − 1)xV

(
(xh − 1) (2xh + 1)− x2

Γ

) (
x2
h + 24x3

V + 2 (xh − 1)2 − 4 (2xh + 1)x2
V

)
− v2

0λhV

[(
3x4

h − 8x3
hxV − xh(xh − 4xV )(8x2

V + 1)− 2xV (24x3
V − 2xV + 1))(xh − 1)2 + x2

Γ )
)]}

+ 4s2x2
V (4xV (3xV − 1) + 1)

(
(2xh + 1)2 + x2

Γ

)
− 4sxV λhV v2

0 (2xh (2xV + 1) + 1− 6xV )
(
xh (2xh − 1)− 1− x2

Γ

)
+
λ2
hV v

4
0

(
(xh − 1)2 + x2

Γ

)
x2
h − 4xV xh + xV

×

(
6x4

h + 4x3
h (1− 8xV ) + x2

h (12xV (4xV − 1) + 1)− 64x3
V xh + 96x4

V + xV
)]
, (B.5)

where the dimensionless quantities β = (1 − 2xh)/(vhvV ) and xΓ = Γhmh/s, and vh and vV are the lab-frame
velocities of the Higgs and vector DM, respectively.

Similarly, the annihilation cross-section for χχ→ hh (and equivalently for χ↔ ψ) is given by

σvcms
rel (χχ→ hh) =

(
λhχ
Λχ

)2
vh

32πs

[(
s− 4 cos2 ξsxχ − 8 cos ξv2

0
λhχ
Λχ

mχ

)
+ 4βs2|Dh(s)|2v2

0 coth−1 β

(1− 2xh)2
λhχ
Λχ
×{

2mχ cos ξ (2xh − 1)
(
xh (2xh − 1)− x2

Γ − 1
) (

8 cos2 ξxχ − 2xh − 1
)

+ v2
0
λhχ
Λχ

(
1− 4xh + 6x2

h − 16xχ cos2 ξ (xh − 1)− 32 cos4 ξx2
χ

) (
(xh − 1)2 + x2

Γ

)}
+ 3s2|Dh(s)|2xh

(
8 cos ξv2

0 (xh − 1) λhχ
Λχ

mχ − s (xh + 2)
(
4 cos2 ξxχ − 1

))
−
(
λhχ
Λχ

)2 2v4
0
(
2xχ

(
8 cos4 ξxχ + 1

)
− 8

(
1 + cos2 ξ

)
xhxχ + 3x2

h

)
x2
h + xχ − 4xhxχ

]
,

where β = (1− 2xh)/(vhvχ), with vχ the lab-frame χ velocity.
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